Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong

mpanainacth
6.2 Ideal Sampling

(Section 6.3)

Prelude to Reconstruction

- Start with discrete-time samples.

"Connect-the-Dots" interpolation

Figure 51

"Connect-the-Dots" interpolation

Figure 51

"Connect-the-Dots" interpolation

Figure 51

"Connect-the-Dots" interpolation

"Connect-the-Dots" interpolation

$$
\begin{aligned}
\hat{g}(t) & =\sum_{n=-\infty}^{\infty} g[n] h\left(t-n T_{S}\right)=\sum_{n=-\infty}^{\infty} g[n]\left(\delta\left(t-n T_{S}\right) * h(t)\right) \\
& =\left(\sum_{n=-\infty}^{\infty} g[n] \delta\left(t-n T_{s}\right)\right) * h(t)=g_{\delta}(t) * h(t)
\end{aligned}
$$

Important Fourier Transform Pair

$$
\begin{aligned}
& f_{0} \sum_{t=0}^{s} \delta\left(t-k f_{0}\right)
\end{aligned}
$$

In particular,

Making Copies (Replicas, Clones): Modulation vs. Ideal Sampling

- Modulation:
- Let $y(t)=g(t) \cos \left(2 \pi f_{c} t\right)$.
- Then, $Y(f)=\frac{1}{2} G\left(f-f_{c}\right)+\frac{1}{2} G\left(f+f_{c}\right)$.
- Ideal Sampling:
- Let

$$
g_{\delta}(t)=\sum_{n=-\infty}^{\infty} g[n] \delta\left(t-n T_{s}\right)
$$

- where $g[n]=g\left(n T_{s}\right)$.
- Then,

$$
G_{\delta}(f)=f_{s} \sum_{k=-\infty}^{\infty} G\left(f-k f_{s}\right) .
$$

- where $f_{s}=\frac{1}{T_{s}}$.

Ideal Sampling

Figure 47

The Fourier
transform of
the original
signal

The Fourier transform of the (ideal) sampled signal

$$
g[n]=\left.g(t)\right|_{t=n T_{s}}=g\left(n T_{s}\right)
$$

Ideal Sampling $g_{\sigma}(t)=\sum_{n=0}^{\infty} g[m] \mid\left(t-n r_{s}\right)$

The Fourier transform of the original signal

Ideal Sampling: MATLAB Exploration

When the value of B is too large, the shifted replicas of $G(f)$ overlap.

Ideal Sampling: MATLAB Exploration

Figure 48

When $B>0.5$
[f_{s}], overlapping happens in the frequency domain.

This spectral overlapping of the signal is commonly referred to as "aliasing".

Ideal Sampling: MATLAB Exploration

Ideal Sampling: MATLAB Exploration

Ideal Sampling: MATLAB Exploration

Ideal Sampling: MATLAB Exploration

The Fourier transform of the original signal

The Fourier transform of the (ideal) sampled signal

Figure 47

When $B<0.5$
[f_{s}], the replicas do not overlap and hence we do not need to spend extra effort to find their sum.

Ideal Sampling: MATLAB Exploration

The Fourier transform of the original signal

When $B<0.5$
$\left[f_{s}\right]$, the replicas do not overlap and hence we do not need to spend extra effort to find their sum.

Ideal Sampling: Periodicity

The Fourier transform of the original signal

The Fourier transform of the (ideal) sampled signal

Note that $G_{\delta}(f)$ is "periodic" in the frequency domain with

Ideal Sampling: Periodicity

Note that $G_{\delta}(f)$ is "periodic" in the frequency domain with

Ideal Sampling: Tunneling

Ideal Sampling: Tunneling

Ideal Sampling: Tunneling

[Gdelta_demo8.m]

Ideal Sampling: Folding

Ideal Sampling: Folding (a revisit)

[Gdelta_demo9.m]

Complex exponential

Sample a complex-exponential signal $e^{j 2 \pi f_{0} t}$ with sampling rate f_{S}

Let's increase f_{0}

Complex exponential

Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong

рим
6.3 Reconstruction

Sampling and Reconstruction

Time Domain
Frequency Domain

$$
g[n]=g\left(n T_{s}\right)
$$

$$
g_{\delta}(t)=\sum_{n=-\infty}^{\infty} g[n] \delta\left(t-n T_{S}\right) \stackrel{\mathcal{F}}{\rightleftharpoons} \quad G_{\delta}(f)=\sum_{k=-\infty}^{-3 f_{s}} f_{S} f_{T}\left(f^{-2 f_{0}}-k f_{S}\right)
$$

Time Domain

Sampling and Reconstruction

Frequency Domain

Sampling and Reconstruction

Reconstruction of $\cos (2 \pi(2) t)$

$T_{s}=0.4$
[Upper plot in
Figure 50.]

Reconstruction of $\cos (2 \pi(2) t)$

$$
\begin{aligned}
T_{s} & =0.4 \\
f_{s} & =1 / 0.4 \\
& =2.5[\mathrm{Sa} / \mathrm{s}]
\end{aligned}
$$

[Upper plot in

$G_{\delta}(f)$ when $g(t)=\cos (2 \pi(2) t)$

Reconstruction of $g(t)=\cos (2 \pi(2) t)$

$$
\hat{g}(t)=\cos (2 \pi(0.5) t)
$$

Reconstruction of $\cos (2 \pi(2) t)$

$T_{s}=0.2$
$f_{s}=\frac{1}{0.2}=5[\mathrm{Sa} / \mathrm{s}]$

Reconstruction of $\cos (2 \pi(2) t)$

$T_{s}=0.2$
$f_{s}=\frac{1}{0.2}=5[\mathrm{Sa} / \mathrm{s}]$

[Lower plot in Figure 50.]

ECS332 Chapter 6 . $2 B \Rightarrow$ the reconstructed signal is "the same" as the original signal.

$G_{\delta}(f)$ when $g(t)=\cos (2 \pi(2) t)$ G. (f)

Reconstruction of $g(t)=\cos (2 \pi(2) t)$

$$
\hat{g}(t)=\cos (2 \pi(2) t)
$$

Reconstruction of $\cos (2 \pi(2) t)$

$T_{s}=0.2$
$f_{s}=\frac{1}{0.2}=5[\mathrm{Sa} / \mathrm{s}]$

Some reconstruction error is visible at the boundaries because we did not use $g[n]$ for n beyond ± 2 in the reconstruction here.

Triangular (linear) interpolation

Figure 51

Triangular (linear) interpolation

Figure 51

sinc vs. triangular interpolation

Figure 52

sinc vs. triangular interpolation

Figure 52

sinc vs. triangular interpolation

